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In this paper a semi-implicit finite difference method for the 2-dimensional shallow water 
equations is derived and discussed. A characteristic analysis of the governing equations is 
carried out first, in order to determine those terms to be discretized implicitly so that the 
stability of the method will not depend upon the celerity. Such terms are the gradient of the 
water surface elevation in the momentum equations and the velocity divergence in the 
continuity equation. The convective terms are discretized explicitly. The simpler explicit 
discretization for the convective terms is the upwind discretization which is conditionally 
stable and introduces some artificial viscosity. It is shown that the stability restriction is 
eliminated and the artificial viscosity is reduced when an Eulerian-Lagrangian approach with 
large time steps is used to discretize the convective terms. This method, at each time step, 
requires the solution of a linear, symmetric, 5-diagonal system. Such a system is diagonally 
dominant with positive elements on the main diagonal and negative ones elsewhere. Thus, 
existence and uniqueness of the numerical solution is assured. The resulting algorithm is mass 
conservative and fully vectorizable for an efficient implementation on modern vector computers. 
The performance of this method is further improved when used in combination with an ADI 
technique which results in two sets of simpler, linear 3-diagonal systems and maintains all the 
properties described above. 0 1990 Academic press, IEK. 

1. hTRoDucT10~ 

The a-dimensional shallow water equations constitute a system of quasilinear 
hyperbolic partial differential equations. Such equations have the form 

az aC(h+z)ui+a[(h+z)vi=O at+ ax ay ' 

(1) 
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SHALLOW WATER EQUATXONS 57 

where U(X, y, t) and v(x, y, t) are the depth-averaged velocity components in t 
and in the y directions, respectively, z(x, y, t) is the water surface elev 
measured from the undisturbed water surface, h(x, y) is the water depth also 
measured from the undisturbed water surface, g is the constant gravitational 
acceleration, ~~~ and zY are wind stress terms in the x and y directions, respective 
and y is the bottom friction coefficient. Typically, y is given by 

where N(x, y, t) = h(x, y) + z(x, y, t) is the total water depth, and C, is the 
friction coefficient. 

Several numerical methods for Eq. (1) are known in the current literature 
now widely used (see, e.g., [l, 2, 6-8, 11, 12, 16, 171). If the solution of the 
tions is expected to have sharp gradients, the numerical solution may either 
spurious oscillations or be affected by a large artificial viscosity. Spuriou 
tions or artificial viscosity often destroy the accuracy so that the numerical solution 
simply becomes unacceptable [3]. Another severe limitation of standar 
numerical methods for Eqs. (1) is due to the stability restriction impose 
Courant-Friedrich-Lewy condition. This restriction usually requires a muc 
smaller time step than permitted by accuracy considerations. Of c 
implicit discretization of the governing equations often leads to meth 
unconditionally stable. Fully implicit methods, however, involve the 
solution of a large number of coupled nonlinear equations. Moreover, for ac~uracy~ 
the time ste cannot be arbitrarily large so that these methods often become 
impractical. 

A very popular numerical method for solving Eqs. (1) is the one devel 
Leendertse [!I, 123. The numerical results obtained from the integration 
equations are also used by simulation models to calculate residual curre 
and to analyze the salinity distribution in well-mixed estuarie [7]. Leeudertse’s 
method uses a staggered grid and a semi-implicit approach to iscretize all terms 
in the governing equations. With this method an alternatin 
(ADI) technique is used. Thus, if the computational region is divided into M x m 
mesh points, at each time step, it yields n linear tridiagonal systems of 2m eq~a~i~~~ 
in 2m unknowns in one direction, and m linear tridiagonal systems of 2n equations 
in 2n unknowns in the other spatial direction. Leendertse’s method successfully uses 
a semi-implicit type of discretization which results in a practical algoritb~~. 

The method which will be derived next, uses a space staggered mesh on which 
the governing equations are discretized with a semi-implicit tech 
that the stability of the method does not depend upon the cele 
vective terms can be discretized by using a simple, but highly 
formula or by using a more accurate Eulerian-Lagrangian approach. In t 
case the resulting algorithm is also shown to be u~~ond~tional~~ 
ting the use of larger steps with corresponding improvements in 
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accuracy. Computationally, at each time step, we first derive a n x m linear 
5-diagonal system where the new water surface elevation is the only unknown. Such 
a system is symmetric and positive definite. Thus it can be solved uniquely and 
efficiently by using a preconditioned conjugate gradient method. Then, the fluid 
velocity is obtained explicitly from the discretized momentum equations. Overall, 
most of the required arithmetic operations can be made independent from each 
other and highly vectorizable for an efficient implementation on vector computers. 

The efficiency of these methods can be further improved by introducing a two 
time level approach which alternatively solves for the x-momentum and continuity 
equation in a first level, and for the y-momentum and continuity equation in the 
second level. The overall computational effort is thus reduced since the 2-dimen- 
sional system is so decomposed into II tridiagonal systems of m equations in m 
unknowns in the first level, and m tridiagonal systems of IZ equations in y1 unknowns 
in the second level. Each of these systems is linear, strictly diagonally dominant, 
and has positive elements on the main diagonal and negative ones elsewhere. Thus 
the existence and the uniqueness of a stable numerical solution is always assured. 

2. CHARACTERISTIC ANALYSIS OF THE GOVERNING EQUATIONS 

Equations (1) form a quasilinear hyperbolic system of partial differential equa- 
tions in three independent variables. In order to determine the particular semi- 
implicit discretization, whose stability is independent on the celerity, we will first 
analyze the characteristic cone of the governing equations (see [4]). To this 
purpose let us rewrite Eqs. (1) in the equivalent form 

au au au a2 
~+u~+v-&+g~= -yu+z, 

au au au az 
~+u~+v&+gy= --yv+z, 

az aZ az 
--+U--+v-+H au+ao = -+~, 

ay [ I ax ay ay 
or, in matrix notation, 

where W = (u, v, z)=, and 

0 0 

v g> 
H v I 

(4) 

-yu+z, 

-yv+z, 

ah ah . 

-“~-vv 1 

(3) 
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lf I denotes the identity matrix, the characteristic equation of system (4) is given by 

det(q1 + rA + sB) = 0; (5) 

that is, 

(q + ru + su)[(q + ru + 90))~ - gM(r* + A-‘)] = 0. 

The triples (q, Y, S) satisfying Eq. (6) are the directions normal to the charac- 
teristic cone at its vertex [lo]. Equation (6) decomposes into the two equations 

and 

q+ru+sv=o, 17) 

(q + YU + so)2 - gH(? + $2) = 0. (83 

ence, as shown in Fig. 1, the local characteristic cone with vertex in (x0, yO, to) 
consists of the line through (x0, yO, to) parallel to the vector (1, U, u), and the cone 
whose equation is 

~(x-x,)-u(t-tt,)]*+[(y-y,)-v(t-t,)]*-gH(t-to)2=0; g 

in fact, on the cone surface, the gradient of the left-hand side of Eq. (9) satisfies 
Eq. (8). 

Note that, whereas the first part of the characteristic cone depends only on the 
fluid velocity u and v, the second part, which is defined by Eq. (8), depends also 
upon the celerity m. Note also that the term gN in Eq. (6) arises from the 
off-diagonal terms g and H in the matrices A and 
az/ax in the first equation, the coefficient of ~Yz/ay i 
coefficient of au/ax and &lay in the third equation of system (3). ~o~seq~e~~ly, 
these derivatives must be discretized implicitly in order for the stability of the 
method to be independent of the celerity. 

FIG. 1. Characteristic cone through (0, 0, 1). 
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3. A SEMI-IMPLICIT NUMERICAL METHOD 

Based on the discussion of the previous section we will derive, next, a numerical 
method for Eq. (3) in which the gradient of surface elevation in the momentum 
equations and the velocity divergence in the continuity equation will be discretized 
implicitly. The convective terms in the momentum equations, however, will be 
discretized explicitly. As it concerns the right-hand sides of Eqs. (3) we will proceed 
as follows. For stability, the friction terms in the momentum equations will be 
discretized implicitly, but the friction coefficient y will be evaluated explicitly so that 
the resulting algebraic system to be solved will be linear. The continuity equation 
will be considered in its original conservative form as 

f3z aC(~+z)ul+al(h+z)~l=o 
at+ ax ay ' 

where u and v will be discretized implicitly, while the total water depth H = h + z 
will be taken explicitly. 

Next, as shown in Fig. 2, we introduce a spatial mesh which consists of rectangular 
cells of length Ax and width Ay. Each cell is numbered at its center with indices i 
and j. The discrete u velocity is then defined at half integer i and integer j; u is 
defined at integer i and half integer j, and z is defined at integer i and integer j. The 
water depth h(x, y) is assumed to be known throughout. Then, a general semi- 
implicit discretization of Eqs. (3) takes the form 

(10) 
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FIG. 2. Spatial mesh. 

or, equivalently, 

At - g-(z;;;,-zfJ”)-tAtz. 
AY 

J 

where Z:+ ,,2 j and ~7: ji 1,2 are defined as simple averages from the closest scalar 
points, that is, 

Hn (I 1) F is an explicit, nonlinear finite difference operator, corres~o~d~~g to the 
spatial discretization of the convective terms U, + MA,+ VU, and v,+ MU,+ 0~)~~ 
particular form for F can be chosen in a variety of ways and will be analyzed fater. 

For any structure given to F, Eqs. (11) constitute a iinear system of 
with unknowns z&&, j, II:;+! 1,2, and z:T’ over the entire cell configura 
system has to be solved at each time step to determine, recursively, val 
tieid variables from given initial data. From a computational point of view, since 
most of the computer time will be devoted to the solution of system (1 I), we wih 
first reduce this system to a smaller one in which z:T1 are the only ~~k~~w~s~ 
Specifically, substitution of the expressions for u;::,,, j and ~ti+il~,~ from the first two 
equations into the third equation of system (11 j yields 
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z’Ft1 At2 Ff++pj+hi+~/~j 
1.J -gz [ 1 + if+ 1/2,jAt 

’ (zf;+‘ltj-zy) 

-k _ Zi- 1/2,j + hi- 1/2,j 
1 + Y:- 1/2,jAt 

(zy-z;:;j’] 

At2 

-gdyz 
L 

‘:j+ 112 +h,j+ l/2 

’ +Ytj+l/2At 

(z:j=‘l - z:i’ ‘) 

‘:j- 112 + hi j- 112 - ’ 
1 + Y:j- 1;2At 

(zy -z:;:l,] 

At =zrj-- 
L 

Ff+ 112 j+hi+ 112 j 
’ Ax 1 + Yi’+ 1/2,jAt 

’ (Fuf+ 1/2,j + Atrx) 

Z&l/2,j+hi- - “‘,j (Fu;p 1,2, j + Atz,) 
1 + YE 1/2,jAt 1 

At 
[ 
‘Fj+ 112 + hi,j+ 112 

AY ’ +Y:j+l/2At 
(Fv:j+ l/2 + Atry) 

-k 
_ ‘i,j- 112 + hi+ l/2 (Fvtjp 1,2 + At7 

1 + Y:j- 1/2At 

) 1 Y . (12) 

Equations (12) constitute a linear Sdiagonal system of equations for $7 ‘. This 
system, under the assumption (5” + h)i+ 1,2 j > 0 and (Z” + h),, j+ 1,2 > 0, is symmetric 
and strictly diagonally dominant with positive elements on the main diagonal and 
negative ones elsewhere. Thus, it is positive definite and has a unique solution. In 
practice, this Sdiagonal system can be solved very efficiently by preconditioned 
conjugate gradient methods which, in combination with multicoloring techniques, 
are suitable for vector computations (see Ref. [14] for further details). 

4. STABILITY OF THE METHOD 

The stability analysis of the semi-implicit method (11) will be carried out by 
using the von Neumann method under the assumption that our differential equa- 
tions (3) are linear and defined on an infinite spatial domain, or with periodic 
boundary conditions on a finite domain. Hence, the difference equations (11) 
reduce to 

(13) 

+ HE (vf;$,-~ktl 
AY ’ 

z,~-l1/2)=~~j, 
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where the operator P has been assumed to be linear, and all the coefficients have 
been assumed to be constants. 

Now, by changing variables u and v with U= u Jw an V=.3JTjZ, 
respectively, and variable z with variable Z = z &$?, Eqs. (13) become 

In order to analyze the stability of Eqs. (14) with the von Neumann method, a 
Fourier mode is introduced for each field variable U, V, and Z and the stability 
analysis is carried out on the corresponding amplitude functions. ~~ec~~ca~~y, 
‘f+ i/2,jy ‘Fj+ 112, 

“k I[(i+1/2)x+~/?] and Z: j are replaced in (14) by U e 2 
~keI[ir+(j+I:2)B1 

2 

and .$?kel(iZ+jpl, respectively, where ok, pk, and gk are the arn~~~t~de functions of 
hi, V, and Z at time level tk, I= 0, and ce and B are the x and the y p 
angles. Thus, after some simplifications, (14) implies 

+ At-&H (e IPi2 --e -ID/2 

Ay &jk 
) > 

pkfl =$$k 

where f is the amplification factor of the linearized operator F which will be 
analyzed later. Now, since erx12-e -r”2 = 21sin(a/2), Eqs. (15) become 

f0’” ok+1 +2@+1_ 
l+yAt 

fP pk+1+2&~k+l=~ 
1fyAe 

5X1/86/1-5 
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where 

P 
P= 

At&H At&H 
Axdm 

4= sin - . 0 Ay,/m 2 

In matrix notation, Eqs. (16) can be written as 

R@k + l= s$Jk, 

where pvk = [ok, pk, pklT, 

f 0 o- 
1 +yAt 

f 0 0 ~ 
l+yAt 

0 0 l_ 1. 

(17) 

(18) 

Thus, the amplification matrix of the method is G = R-S, and a necessary and 
sufficient condition for stability is 11 G/I z < 1 identically for every a and b. But, since 
IjGll 6 IIR-‘ll . IlSll, we are seeking the conditions for which IIR-‘[l d 1 and [ISI/ < 1. 

Note now, that the two matrices R and S, and hence also R- ‘, are normal 
matrices; that is, they commute with their respective hermitian conjugate. Thus, 
the norms of R-’ and of S are equal to their respective spectral radius. But, the 
eigenvalues of R are 

1,=1+221Jp7, 1, 1-2zJ$P3, (19) 

thus the spectral radius of R-’ is always no greater than unity. Next, the eigen- 
values of S are 

f As=- ~ 
1 + ydt’ 

1 f 
’ l+yAt’ (20) 

Hence, in order for spectral radius of S not to exceed unity, it is suflicient that 

Ifl GL (21) 

identically for every a and /?. Thus the stability, the consistency, and the accuracy 
of a finite difference method (ll), depends only on the choice of the difference 
operator F. 

5. CONVECTIVE TERMS DISCRETIZATION 

As it concerns the choice for the difference operator F, here we will consider the 
two cases, where a simple upwind differencing approximation is used and the case 
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where a more flexible Eulerian-Lagrangian approach is used. In the first case, the 
first-order spatial derivatives are replaced by first-order difference quotiens, ba 
ward if u(or IJ) is positive and forward if u (or II) is negative. If we assume u a 
v positive, F is defined as 

Fw:i=w~j-u:j-g(w~j-w~~I,j)-v~j~(w~j-w:,~~). 
’ AY 

622) 

where the convective coefficients utj and vtj, if not defined at (i, j), are 
approximated by simple averages from the closest surrounding mesh points. In this 
case, the amplification factor f can be determined by assuming that y and o are 
constants so that the linearized upwind operator F takes the form 

Upon substitution of the Fourier mode in (23) we get 

f=l-u$-t~$+u$ [cos(r)-Zsin(a)]+i!$ [cos(/?)-Zsin(P)], (24) 

so that the modulus off satisfies the following inequality 

Hence, since u and v have been assumed to be positive, the condition on the time 
step to have IfI < 1 is 1 - [u(dt/dx) + v(At/Ay)] 30, which, for more eneral 
coefficients u and v, can be written as 

Note, however, that for large 1~1 or Iv], inequality (26) becomes quite restrictive. 
In order to obtain an explicit form for F which is relatively accurate an 

unconditionally stable, an Eulerian-Lagrangian approximation must be used (see, 
e.g., [3, 6, 9, 151). To this purpose note that the convective terms can be re~vr~tte~ 
more compactly as Lagrangian derivatives as 

where the substantial derivative d/dt indicates that the time rate of change is 
calculated along the streamline defined by 

dx dv 
-$= % z=v. f3) 
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Now, by denoting with a and b the Courant numbers 

At 
a=udx’ 

b=+; (29) 

Eq. (27) implies that the correct physical expression for Fwtj is 

Fwtj= w;-‘_,,~-~. (30) 

Note that Fwtj is the value of w at time t, in (i-a, j-b) which is being convected 
in (i, j) in a lapsed time At. In general, however, a and b are not integers, and there- 
fore (i - a, j - b) is not a grid point. For this reason an interpolation formula must 
be used to approximate the right-hand side of Eq. (30). When u and u are positive, 
if wk lea, j--b is approximated with a linear interpolation between (i, j), (i - 1, j), and 
(i, j- l), there results again the upwind formula (23). In this case the stability 
restriction (26) can be regarded as a condition that wfPO jPb must be evaluated as 
an interpolation rather than extrapolation. 

The Eulerian-Lagrangian methods use a generalization of the interpolation 
concept of wtU, j-6 between three or more mesh points which do not necessarily 
include the point (i, j) (see [3]). Here we will consider the case that wf-, j+-b is 
approximated with a bilinear interpolation over the four surrounding mesh points. 
To this purpose, see Fig. 3, let a = 12 + p, b = m + q, where II and m are integers and 
0 < p < 1,0 < q < 1. Then the right-hand side of (30) is approximated by 

In practice, since u and u are not constants, the correct value of a and b can be 
found from the solution of the ordinary differential equations (28). Specifically, 
since u and v are known only at time level tk, we will first assume that u and v 
do not vary over a time step. Then, at each mesh point (i, j) Eqs. (28) will be 
integrated numerically from t, + i to tk by using, for instance, the Euler method. 

FIG. 3. The Eulerian-Lagrangian mesh. 
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Thus, the time step At is divided into N equal parts of lengths z = 0 t/N and 
qs. (28) are discretized backward as 

xx - 1 zz x.5 - &(XS, y”), XNZX. I> 

Y”-’ = ys - ZUk(XJ, y”), YN = Yj, s= N: IL- 1, N- 2, I.., 2, 1, 
(32) 

re uk(xS, y”) and uk(xS, y”) are interpolated with a formula similar to (31). 
n, at (xi, yj), a and b are defined by 

Xi-X0 
a=72 

b=Y,-Y” 
AY 

In so doing, the stream lines, which in general are not straight lines, are 
approximated. This integration process is relatively fast expecially if perform 
a vector machine since it, again, is fully vectorizable. 

The amplification factor of F, when the Eulerian-Lagrangian formula (31) is 
used, for u and z, constants, is given by 

f= [cos(na) - Zsin(na)][cos(mp) - Zsin(mp)] 

x[l-p+pcos(cc)-Zpsin(a)][l-g+gcos(fi)-Zqsin(fi)]. (33) 

ence, since 0 6 p < 1, and 0 <q < 1, we get /f 1 d 1 identically for every a an 
and with no restriction on the time step. Thus, a first advantage of an Eulerian- 

Lagrangian approach to discretize the convective terms is that the resuiting 
difference equations (11) are unconditionally stable. For consistency, however, a 
restriction on the time subdivision z must be impose in order for the approxi 
stream lines not to cross the solid boundaries. e Courant numbers 
based on r and the fluid velocity should not exe 

r,<min 
i 

Ax AY 1 
maxi,j 14, l/2, j I ‘maxi,f l’!f[j+1izji~ 

(34) 

Note that inequality (34) is sufficient to assure that the stream lines approx~~~te~ 
b,y (32) will not cross the solid boundaries. Assume, for example, that the line x = 0 
is a solid boundary and that (Y, y”), xX > 0 is a point that lies inside the corn 
tional domain. If xS 3 Ax then, Eq. (32) and inequal y (34) imply j.Fr --‘I 
and hence X’ ~ ’ >, 0. If xs =C Ax then, since u:- 1,2 j = for all j, from the first equa- 
tion (32) one obtains 

x3- t = xs - wk(xS, y”) = xs - 2 [( 1 - 2) ~~(0, y”) + xsuk(Ax, y”)] 

=xfl -&uk(Ax, y”) 30. 1 
Thus, in no case will the stream line approximated y (xS, y”), s = 0, 1, 2, ..-) N: 
cross the solid boundary x = 0. 

Note that the consistency condition (34) is not required for the stability of the 
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method but contributes to improve its accuracy. From a computational point of 
view it must be observed that the Eulerian-Lagrangian approach, permitting a 
larger step, allows less frequent solutions of linear system (12) which has to be solved 
each At time units. Within each time step, N applications of the simple Lagrangian 
formula (32) are required in order to approximate the streamlines through each 
mesh point. 

6. ARTIFICIAL VISCOSITY 

The semi-implicit finite difference scheme (10) will introduce some artificial 
viscosity when either the upwind formula (22) or the Eulerian-Lagrangian formula 
(31) is used for F. In order to analyze the artificial viscosity introduced by these 
methods, recall that the Lagrangian derivative (27) has been discretized as 

(36) 

where wt, jPb has been approximated either with the linear interpolation (22) or 
with the bilinear interpolation (31). Consider, first, the case that the upwind 
formula (22) is used. In this case, a Taylor series expansion about (i - a, j-b) of 
each term in (22) yields 

Wk?’ I, 1 -W:-a,j-b dw -- 
At dt 

= & Ax2a( 1 - a) $ - AxAyab &+Ay’h(l-h)$ 
I 

+HOT, (37) 

where HOT stands for higher order terms. The right-hand side of (37) represents 
the truncation error whose lowest order term has a form of a viscosity. Such an 
artificial viscosity is directionally dependent and, of course, has a smearing effect on 
the numerical solution. Note also that, due to the limitation (26) on the time step, 
the artificial viscosity coefficients cannot be arbitrarily reduced in this case. 

When the Eulerian-Lagrangian formula (3 1) is used for F a Taylor series expan- 
sion about (i - a, j - b) yields 

Wkt’ Ll - w;ea j-b dw -- 
At’ dt 

Ax2~(l-p)$+Ay2q(l-q)~ +HOT. 
w I 

Note, first, that the mixed derivatives term does not appear on the right-hand side 
of (38). Moreover, since p and q are the decimal parts of a and b, respectively, the 
artificial diffusion given by (38) can be arbitrarily reduced with respect to the one 
given by (37). This reduction can be obtained by increasing a and b, which, since 
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the method is unconditionally stable, can be achieved either by increasing At or by 
reducing Ax and AJJ (see Ref. [3] for further details). 

Complete elimination of the numerical diffusion can be achieved by using a 
igher order interpolation formula to define Fwfj. For instance, if a biqua 

interpolation formula over nine surrounding mesh’points is used, the resulting finite 
difference method is entirely free from artificial viscosity. The accuracy of the 
method, in such a case, would not be greatly improved since biq~adrat~c interpola- 
tion may introduce spurious oscillations (see [3] ). 

7. ALTERNATING DIRECTION SEMI-IMPLICIT 

In order to simplify the solution algorithm even further, we will introduce, next, 
an alternating direction algorithm so that the original scheme will be deco 
into a 2-levels method involving the solution of a set of simple tridiago~a~ 

In the first level the u-velocity is assumed to be known at time t, _ 1I21 and the 
u-velocity and the surface elevation are assumed to be own at time t,. Then, the 
x-momentum and the continuity equations are finite d 

-(Z:j~!,2+h*,j~1/2)U:j~1/*1, 
Ehminaton of &+~/~ j in (39) yields 
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For eachj, Eqs. (40) constitute a linear tridiagonal system with unknowns zrf 1’2. 
These systems are strictly diagonally dominant, symmetric, and with positive 
elements on the main diagonal and negative ones elsewhere. Therefore they all have 
a unique solution which can easily be determined by a direct method. Once the 
2”: ‘I2 are determined, the new values for ur:$! j 
using the first equation of system (39). 

, can be evaluated explicitly by 

Next, we can proceed to the second level of calculation by finite differencing the 
y-momentum and the continuity equations as 

(1 + y;;;S2At) I$&, = Fv;~+~,~- gdf (z$& 
AY ’ 

- zg ‘) + An, 

Elimination of vkl ’ I, J f 1,2 in (41) yields 

At Zkt1’2 +h.. 
-- I,Jt t/2 

2Ay 
‘.J+1i2 (Fv’U~~~+~,~+A~ZJ 

1 + y:j=‘$2 At 

Z:i’_‘$2 + h,,j- l/2 
1+ y:;?$2 At 

(Fvfj- ,,2 + An,) . I 

(41) 

(42) 

For each i, Eqs. (42) constitute a linear tridiagonal system with unknowns 22: ‘. 
These systems are also symmetric, strictly diagonally dominant, and with posmve 
elements on the main diagonal and negative ones elsewhere. Therefore their unique 
solution can easily be determined by a, direct method. Once the z:T’ are deter- 
mined, the new values for t~fT+rr,~ 

’ 
can be evaluated explicitly by using the first 

equation of system (41). 
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It is worthwhile to point out that, if the computational region is 
n x ~ti finite difference cells, Eqs. (12) yield a linear, S-diagonal syst 
equations in n x m unknowns. While, if the alternating direction former 
used, then, at each time step, we have to solve m tridiagonal systems of y! e 
(40) in n unknowns in the first level, and n tridiagonaf systems of m equations (42) 
an m unknowns in the second level. On a vector computer these systems can be 
easily solved simultaneously by a vectorized direct method. 

Note, finally, that both the semi-implicit method of Section 3 
method described above are mass conservative. Moreover, when 
kagrangian approach is used the new fluid velocity at any point (i5 j 
related to the same quantity at the previous time step in (i- 61, j-h). Conse- 
quently, a more appropriate explicit evaluation of the bottom stress coefficient will 
be performed at (i - a, j - b). 

8. COMPUTATIONAL 

Bn order to illustrate some computational aspects of the methods de 
above, consider here a closed rectangular basin, of constant depth la = 0.5 ~2 
length, in the x direction is 6000 m, and whose width, in the y-direction is 

asin is crossed centrally along the x direction by a deeper channel, 
at the right end and is open at the left end. The channel width i 

whille its depth, measured from the undisturbed water surface, is h = 5 m (see 
Fig. 4). The remaining flow parameters are g = 9.81, T, = zY = 0, and C, = 8 
basin boundaries the normal velocity is set equal to zero every 
exception being at the left end of the channel, where an M2 t 
and 0. mplitude is specified. 

The domain is then divided into 40 x 20 finite difference cells of e 
Ax = dy = 150 m. The simulated tidal circulation begins with all water masses at 
rest. A dynamical steady state is reached after app . ely ten compl 
cycles when the numerical solution becomes almost al. Each meth 

h=0.5 

FIG. 4. Basin geometry 
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a velocity field whose components at times t = 108 and t = 120 h agree to four 
decimal places. 

Using a time subdivision r = 30 s, the numerical solution has been calculated 
with the semi-implicit method of Section 3 using At = 60 and At = 360 s. A com- 
parison on the velocity at the t = 120 h showed a slight difference. The above 
calculations were then repeated with the alternating direction semi-implicit method 
of Section 8, again using At = 60 and At = 360 s, and again, a small difference of the 
velocity field was observed at t = 120 h. But, while the results obtained by the two 
methods with At = 360 had a difference within lo%, an excellent agreement was 
achieved when At = 60 was used. In this latter case the numerical results differed by 
no more than 1%. The simulation of one tidal cycle using time step At = 360, 
required 3.7 s of CPU time on a CRAY X-MP/48 by the first method, and only 
1.4 s when the AD1 method was used. Although the specific FORTRAN programs, 
for clarity, dit not use diagonal storage of matrices, each internal loop was naturally 
vectorized by the Cray Fortran Translator, and high performance was achieved. 

Finally, in order to obtain a numerical solution with greater details, a liner grid 
of 60 x 120 cells of equal sides Ax = Ay = 50 m was used together with a time step 
At = 60 s and a time subdivision r = 15 s. For this example the average Courant 
number in the deep channel is then C,= 8. The tidal circulation was again 
simulated for ten tidal cycles using both methods. The simulation of one tidal cycle 
required 79 s of CRAY CPU time by the semi-implicit method of Section 3, and 
32 s by the AD1 method. The numerical results obtained by the two methods at 
t = 120 h agree within a difference of 1%. Figures 5 and 6 show the resulting 
velocity field obtained at the 10th cycle 2 h before high water and 2 h before low 
water, respectively. These latter results also confirmed the validity of the results 
obtained by the two methods on the coarse mesh when At = 60 s was used. (The 
constant velocity vectors which can be observed within the rectangles in Fig. 6 are 
due to poor plotter resolution.) 

FIG. 5. Tidal circulation two hours before high water. 
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FOG. 6. Tidal circulation two hours before low water. 

An application of a non-conservative form of the semi-implicit EulerEan- 
Lagrangian method has been made for simulating the tidal circulation 
Piccolo, an embayment in the Gulf of Taranto, Italy (see 
problem the numerical results have been very satisfactory hence ~o~~rrn~ng the 
method to be reliable, fast, accurate, and unconditionally stable even when the 
Coriolis forces are included in the model. 

9. CONCLUSION 

Some semi-implicit finite difference techniques for the shallow water equations 
have been presented and analyzed. A minimal degree of implicitness has been 
chosen in such a fashion that the stability of the method does not depen 
wave celerity. The resulting linear system to be solved at each time ste 
symmetric, Sdiagonal, and positive definite. Thus a fast preconditione 
gradient method becomes suitable for determining uniquely the numerical s~~t~~~ at 
a reduced computational cost. Eulerian-Lagrangian or explicit unwind difference 
can be used for the convective terms. When the Sumerian-Lagra~g~a~ form~~atj 
is used, the resulting algorithm is shown to be unconditionally stable; comseq~e~ 
higher accuracy can be achieved since the artificial viscosity can be brought un 
control with the same time step size by reducing the spatial ’ 
improvements in the accuracy can be achieved by combining 
with higher order fomulas (see, e.g., [13]) and/or with multigr 
the fluid is expected to have low velocity throughout, the stability condition (26j 
is not too restrictive, and the simpler upwind formuIatio~ is then to be pre 
since, at each time step, a smaller computational effort is required by this m 

When applicable, the alternating direction semi-implicit afg rithm can be com- 
bined with the present method to speed up the computations. this case, at each 
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time step, the implicitness of the discretization results into two sets of linear, 
tridiagonal systems whose unique solution can be easily determined by direct 
methods. Though, at present, a rigorous stability analysis of the alternating direc- 
tion semi-implicit method is not available, several computational experiments have 
indicated that the stability condition given in Section 4 apply to this method as 
well. Nevertheless the numerical solution obtained with ADI techniques may 
become directionally dependent, and hence quite inaccurate, when large time steps 
are used (see Ref. [ 1 ] for details). 

Finally, the methods described above are mass conservative and are so devised 
that they can be easily vectorized for an efficient implementation on modern, high 
speed vector computers. 
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